If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+100t+10=0
a = -5; b = 100; c = +10;
Δ = b2-4ac
Δ = 1002-4·(-5)·10
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-10\sqrt{102}}{2*-5}=\frac{-100-10\sqrt{102}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+10\sqrt{102}}{2*-5}=\frac{-100+10\sqrt{102}}{-10} $
| x+25+2x=x-5 | | 25+5x=5+6x+15 | | 3x+25=11x-7 | | 1/3(x+2)+2/3x=-2 | | 1/3(m+2)+2/3m=-2 | | 6x-5/7=-4x-5/12 | | 65/3=2.4^x | | 5x+20=3x-42 | | -3-5(3x+7$=0 | | 2/6x-x=2 | | 21-3m=9 | | |8x-3|=12 | | 5x^2=19=11 | | 7x+1=3x+4 | | 6=x-2x | | (x-4)/(2x+1)=0 | | x-4=-20+1 | | 4(x-3)^2+5=29 | | 3x-13=2x+3 | | 25b/5=5 | | 25b/5=0 | | 9+1=x-14 | | 25b/5=16 | | 25b/5b=16 | | x+16=20-6 | | x-10=-10+12 | | x2+7x=-10 | | 17-4=x-2 | | -4y+9y=15-20 | | 15x^2-x-16=0 | | 7x+11=19+5x | | 2z=34 |